-
Suspension Geometry Design
25 Lessons-
StartConcepts of Kinematics
-
StartWheel Axis systems
-
StartExample to learn kinematics
-
StartMulti-Link and Double wishbone suspensions
-
StartTie Rod and Double Wishbone system
-
StartInstant Center and Instant Axis
-
StartConstraining Axle
-
StartSwing Arm geometry
-
StartHard points
-
StartElastokinematics
-
StartSuspension Bushes
-
StartSteering Axis
-
StartSuspension Travel
-
StartCamber Angle
-
StartToe Angle
-
StartGeometry and scrub radius
-
StartRoll centre Full
-
StartSteering link Geometry and Bump Steer
-
StartCamber Change Rate
-
StartCaster angle
-
StartAnti - features Intro
-
StartAnti Dive Geometry
-
StartAnti Squat and Summary
-
StartWheel Path
-
StartLong knuckle
-
-
Longitudinal Dynamics
19 Lessons-
StartTractive Force
-
StartDynamic Force analysis of Vehicle - Free body diagram
-
StartDynamic Force analysis of Vehicle - Free body diagram
-
StartDynamic Force analysis - Force balance
-
StartDynamic Force analysis -Moment balance
-
StartDynamic Force analysis of Vehicle - Axle load transfer and cases
-
StartDynamic Analysis - Braking performance
-
StartBraking performance- Force Balance equation
-
StartTorque Transfer and Inertia
-
StartTorque Transfer and Tractive force analysis
-
StartTorque Transfer and Tractive force analysis - Part 2
-
StartTorque Transfer and Tractive force analysis - Part 3
-
StartTorque Transfer and Tractive force analysis - Part 4
-
StartLongitudinal Slip in Acceleration and Braking
-
StartSlip ratio
-
StartSlip ratio vs Friction force
-
StartAnti lock Brakes
-
StartABS Block diagram
-
StartBrake Design aspects
-
-
Lateral Dynamics
20 Lessons-
StartLateral Dynamics and Low speed Turning
-
StartWhy Ackermann Geometry
-
StartAckermann Geometry Derivation
-
StartAckermann geometry derivation - part 2
-
StartAckermann steering linkage design - geometry
-
StartHigh Speed Turning
-
StartUndersteer , Oversteer
-
StartBicycle Model - Lateral dynamics analysis - Intro
-
StartBicycle Model - Neutral Steer
-
StartBicycle Model - Understeer Derivation- Part 1
-
StartBicycle Model - Understeer Derivation- Part 2
-
StartBicycle Model - Oversteeer
-
StartWhat is Understeer Gradient ?
-
StartSummary - Bicycle model
-
StartFactors Affecting Understeer behaviour
-
StartRoll and its Mechanism
-
StartRoll center and Effects of Roll
-
StartRoll Stiffness Derivation
-
StartRoll - Weight transfer equation
-
StartAnti Roll Bars
-
-
Handling and Steering Performance
13 Lessons-
StartPrime Factors which Affect Handling
-
StartForces generated at Tire
-
StartRoad Holding and Grip
-
StartStiff vs Soft Suspension
-
StartSteady State Handling Test
-
StartDouble Lane Change test
-
StartTuning for Handling
-
StartSteering Feel and Feedback
-
StartSteering On centre Performance
-
StartSummary - Improving Handling Performance
-
StartSteering Ratio
-
StartTurning Circle Diameter
-
StartSteering Returnability Performance
-
-
Vertical Dynamics
21 Lessons-
StartIntroduction to Vertical Dynamics
-
StartVibration Isolation Definition
-
StartTypes of Vibrations
-
StartStiffness
-
StartDamping
-
StartLumped Mass system
-
StartSpring system and Natural frequency
-
StartResonance
-
StartVibration Isolation Design
-
StartTypes of Damping
-
StartCritical Damping
-
StartTransmissability
-
StartQuarter Car Model
-
StartSprung mass and Unsprung mass
-
StartRide Rate and Bounce
-
StartWhy Underdamping for Suspension?
-
StartMechanism of Viscous Damping
-
StartTypical Damper and characteristics
-
StartSuspension Tuning
-
StartMotion Ratio
-
StartRide Perception
-